IN FOCUS

Catch up with latest trends

...................... ......................

The Start of the Internet as we know it


By Andrew Beattie | May 18, 2015


The history of the Internet begins with the development of electronic computers in the 1950s. Initial concepts of packet networking originated in several computer science laboratories in the United States, United Kingdom, and France. The US Department of Defense awarded contracts as early as the 1960s for packet network systems, including the development of the ARPANET. The first message was sent over the ARPANET from computer science Professor Leonard Kleinrock's laboratory at University of California, Los Angeles (UCLA) to the second network node at Stanford Research Institute (SRI).

Packet switching networks such as ARPANET, NPL network, CYCLADES, Merit Network, Tymnet, and Telenet, were developed in the late 1960s and early 1970s using a variety of communications protocols.[2] Donald Davies first designed a packet-switched network at the National Physics Laboratory in the UK, which became a testbed for UK research for almost two decades.[3][4] The ARPANET project led to the development of protocols for internetworking, in which multiple separate networks could be joined into a network of networks.

Access to the ARPANET was expanded in 1981 when the National Science Foundation (NSF) funded the Computer Science Network (CSNET). In 1982, the Internet protocol suite (TCP/IP) was introduced as the standard networking protocol on the ARPANET. In the early 1980s the NSF funded the establishment for national supercomputing centers at several universities, and provided interconnectivity in 1986 with the NSFNET project, which also created network access to the supercomputer sites in the United States from research and education organizations. Commercial Internet service providers (ISPs) began to emerge in the very late 1980s. The ARPANET was decommissioned in 1990. Limited private connections to parts of the Internet by officially commercial entities emerged in several American cities by late 1989 and 1990,[5] and the NSFNET was decommissioned in 1995, removing the last restrictions on the use of the Internet to carry commercial traffic.

In the 1980s, research at CERN in Switzerland by British computer scientist Tim Berners-Lee resulted in the World Wide Web, linking hypertext documents into an information system, accessible from any node on the network.[6] Since the mid-1990s, the Internet has had a revolutionary impact on culture, commerce, and technology, including the rise of near-instant communication by electronic mail, instant messaging, voice over Internet Protocol (VoIP) telephone calls, two-way interactive video calls, and the World Wide Web with its discussion forums, blogs, social networking, and online shopping sites. The research and education community continues to develop and use advanced networks such as NSF's very high speed Backbone Network Service (vBNS), Internet2, and National LambdaRail. Increasing amounts of data are transmitted at higher and higher speeds over fiber optic networks operating at 1-Gbit/s, 10-Gbit/s, or more. The Internet's takeover of the global communication landscape was almost instant in historical terms: it only communicated 1% of the information flowing through two-way telecommunications networks in the year 1993, already 51% by 2000, and more than 97% of the telecommunicated information by 2007.[7] Today the Internet continues to grow, driven by ever greater amounts of online information, commerce, entertainment, and social networking.




Archive Posts


History of the computer | By Andrew Beattie | May 18, 2015
profile picture

A computer is a device that can be instructed to carry out an arbitrary set of arithmetic or logical operations automatically. The ability of computers to follow a sequence of operations, called a program, make computers very applicable to a wide range of tasks. Such computers are used as control systems for a very wide variety of industrial and consumer devices. This includes simple special purpose devices like microwave ovens and remote controls, factory devices such as industrial robots and computer assisted design, but also in general purpose devices like personal computers and mobile devices such as smartphones. The Internet is run on computers and it connects millions of other computers. Since ancient times, simple manual devices like the abacus aided people in doing calculations. Early in the Industrial Revolution, some mechanical devices were built to automate long tedious tasks, such as guiding patterns for looms. More sophisticated electrical machines did specialized analog calculations in the early 20th century. The first digital electronic calculating machines were developed during World War II. The speed, power, and versatility of computers has increased continuously and dramatically since then. Conventionally, a modern computer consists of at least one processing element, typically a central processing unit (CPU), and some form of memory. The processing element carries out arithmetic and logical operations, and a sequencing and control unit can change the order of operations in response to stored information. Peripheral devices include input devices (keyboards, mice, joystick, etc.), output devices (monitor screens, printers, etc.), and input/output devices that perform both functions (e.g., the 2000s-era touchscreen). Peripheral devices allow information to be retrieved from an external source and they enable the result of operations to be saved and retrieved

The Start of the Internet as we know it | By Andrew Beattie | May 18, 2015
Start of the internet

The history of the Internet begins with the development of electronic computers in the 1950s. Initial concepts of packet networking originated in several computer science laboratories in the United States, United Kingdom, and France.[1] The US Department of Defense awarded contracts as early as the 1960s for packet network systems, including the development of the ARPANET. The first message was sent over the ARPANET from computer science Professor Leonard Kleinrock's laboratory at University of California, Los Angeles (UCLA) to the second network node at Stanford Research Institute (SRI).

Packet switching networks such as ARPANET, NPL network, CYCLADES, Merit Network, Tymnet, and Telenet, were developed in the late 1960s and early 1970s using a variety of communications protocols.[2] Donald Davies first designed a packet-switched network at the National Physics Laboratory in the UK, which became a testbed for UK research for almost two decades.[3][4] The ARPANET project led to the development of protocols for internetworking, in which multiple separate networks could be joined into a network of networks.

Access to the ARPANET was expanded in 1981 when the National Science Foundation (NSF) funded the Computer Science Network (CSNET). In 1982, the Internet protocol suite (TCP/IP) was introduced as the standard networking protocol on the ARPANET. In the early 1980s the NSF funded the establishment for national supercomputing centers at several universities, and provided interconnectivity in 1986 with the NSFNET project, which also created network access to the supercomputer sites in the United States from research and education organizations. Commercial Internet service providers (ISPs) began to emerge in the very late 1980s. The ARPANET was decommissioned in 1990. Limited private connections to parts of the Internet by officially commercial entities emerged in several American cities by late 1989 and 1990,[5] and the NSFNET was decommissioned in 1995, removing the last restrictions on the use of the Internet to carry commercial traffic.

In the 1980s, research at CERN in Switzerland by British computer scientist Tim Berners-Lee resulted in the World Wide Web, linking hypertext documents into an information system, accessible from any node on the network.[6] Since the mid-1990s, the Internet has had a revolutionary impact on culture, commerce, and technology, including the rise of near-instant communication by electronic mail, instant messaging, voice over Internet Protocol (VoIP) telephone calls, two-way interactive video calls, and the World Wide Web with its discussion forums, blogs, social networking, and online shopping sites. The research and education community continues to develop and use advanced networks such as NSF's very high speed Backbone Network Service (vBNS), Internet2, and National LambdaRail. Increasing amounts of data are transmitted at higher and higher speeds over fiber optic networks operating at 1-Gbit/s, 10-Gbit/s, or more. The Internet's takeover of the global communication landscape was almost instant in historical terms: it only communicated 1% of the information flowing through two-way telecommunications networks in the year 1993, already 51% by 2000, and more than 97% of the telecommunicated information by 2007.[7] Today the Internet continues to grow, driven by ever greater amounts of online information, commerce, entertainment, and social networking.

How apps is changing the world | By Andrew Beattie | May 18, 2015
profile picture

Mauris interdum fringilla augue vitae tincidunt. Curabitur vitae tortor id eros euismod ultrices. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Praesent nulla mi, rutrum ut feugiat at, vestibulum ut neque? Cras tincidunt enim vel aliquet facilisis. Duis congue ullamcorper vehicula. Proin nunc lacus, semper sit amet elit sit amet, aliquet pulvinar erat. Nunc pretium quis sapien eu rhoncus. Suspendisse ornare gravida mi, et placerat tellus tempor vitae.